
MATHEMATICS OF COMPUTATION 
VOLUME 39, NUMBER 160 
OCTOBER 1982, PAGES 625-637 

On the Computation of Certain Integrals 
Containing the Modified Bessel Function 1 () 

By Keith R. Lassey 

Abstract. Efficient stratagems are developed for numerically evaluating one- and two-dimen- 
sional integrals over x, y with integrand exp(-x - y)IO(2p-xy). The integrals are expressed 
in terms of convergent series, which exhibit the correct limiting behavior, and which can be 
evaluated recursively. The performances of these stratagems are compared with numerical 
integration. 

1. Introduction. This paper is concerned with the efficient evaluation of the 
following integrals, all involving the modified Bessel function, Io((): 

(1) J(x, y) = fe(t+Y)IO(2 ty) dt, 

(2) K(x, y) = e-(t+Y)IO(2 ty) dt, 

(3) L(x, y, p) = (1- p)J ePu-uK(x, pu) du 
0 

(4) = (1 -p) Yduf dte-(u+t)Io(2put), 

where p, x, y , 0. These functions will be referred to as the J-, K-, and L-functions, 
respectively. The J- and K-functions are trivially related (see (18)). 

The J- and/or K-functions are encountered in many contexts. These include: the 
study of exchange processes in columns (such as heat exchange [1], and ion exchange 
including chromatography [2]-[5]); dispersive exchange processes in hydrology and 
soil science [6]-[8]; a probabilistic analysis of targeted missile impacts [9], [5, 
Appendix]; in a solution to the telegraphy equation [5, Appendix], [10]; in a recently 
proposed filtration model of aerosol retention by a vegetative canopy 111], and in 
generalizations of such a model for other environmental-impact modelling applica- 
tions [12]. 

Upon integrating (3) by parts, the L-function becomes expressible in terms of the 
K- or J-functions: 

(5a) L(x, y, p) = (1 - ePY-Y) + ePY-YJ(x, py) - ePx-xJ(px, y), 

(5b) = (1 - ePY-Y) + ePY-YK(py, x) - ePx-xK(y, px). 

Received March 31, 1981; revised December 29, 1981. 
1980 Mathematics Subject Classification. Primary 33A40, 33A70; Secondary 41A58, 65D15. 
Key words and phrases. Modified Bessel functions, integrals of Bessel functions, recursive computation. 

? 1982 American Mathematical Society 

0025-5718/82/0000-0331 /$04.00 

625 



626 KEITH R. LASSEY 

Consequently, the analytic properties of L(x, y, p) follow immediately from those 
of the J- or K-function; nevertheless, there seems to be some merit in retaining it as 
a function in its own right. The L-function was encountered, though not separately 
identified, by Brinkley [1, (22)]; it also arises naturally in a model of filtration [11], 
[12]. 

All of these functions commonly arise as solutions to the hyperbolic equations: 

aa +(X, y) = +2(X, Y), a 4)2(x, Y) = (x, Y), 

(6) ay'a 

(8ay I) (xY) ?, j= 1, 2. 

The solutions to (6) satisfying the boundary conditions 

(7) f(x, 0) A, 02 (0, Y) =0, 

are 

(8) qp1(x, y) = AIo(2xy), 2(x, Y) = A 4x I,(2 xy). 

The solutions satisfying the boundary conditions 

(9) 4)I (X, 0) = ?, 02 (? Y ) = Be YA, 

are 

(10) q1(x, y) = flBeOx+Y/1K(y1/3, ,Bx), 42(x, y) = Befx+Y/J(,fx, y/,B). 

The solution to (6) satisfying 

(I11) 4)1(x,O) =Cexl/, q I(0, y)=Ce YA 

is 

(12) 41(x, y) = Cex/a+Y/{ - L(x/a, yl/3, a/3)}. 

This last solution is trivial in the a,8 1 limit. Luke [10] supplies several other 
partial differential equations with solutions expressible in terms of the J- and 
K-functions. 

Although analytic properties of the J-function have been well documented [5], 
[10], an algorithm for its efficient evaluation seems to be unavailable- except for an 
incomplete collection of analytical approximations of limited accuracy [13]. In the 
absence of such an algorithm, de Smedt and Wierenga [8] resorted to a truncation of 
the infinite summation: 

(13) J(x, y) = e-(X+Y) Y m 
x 

n=O m=O 

Such a series exhibits slow convergence for large arguments; moreover, it may be 
subject to underflow, even for modest argument values (e.g., for x +y > 89, 
e-(x+Y) < 2-128). 

The motivation for the current work is the validation of models of filtration [11], 
in which the search for optimal model parameters was hindered by the relatively 
slow numerical integration originally employed to compute the K- and L-functions. 
The superior algorithms subsequently developed, and reported herein, greatly assist 
such parameter searches. 
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Since the proposed strategems involve the Bessel functions Im(J) it is appropriate 
to first discuss their numerical evaluation. 

2. Computation of the Modified Bessel Function, Im(J) The small-argument and 
asymptotic behavior of IJ(() are 

00 (1~ )2k 

(14) Im(() = (()m k=O (k + m)!k!' 

(15) IM(-- (2vt)-1/2 e 

Cody [14] has catalogued several computer codes for computing Im(4). Some are 
specific to m = 0 or 1, while others are appropriate for computing the sequence 

Im(() for m = 0, 1, . . , M; the latter exploit the stable three-term backward-recursion 
relationship for contiguous values of m. In practice, Im(() often occurs weighted 
exponentially (i.e., in the form ew-Im(J)), in which case efficiency is enhanced if the 
computer code returns the exponentially-scaled Bessel function, e-Im((), without 
internal computation of the exponential function; it is natural to proceed in this way 
in the asymptotic domain where the behavior (15) dominates. 

In the proposed stratagems for the large-a domain, we have chosen to employ the 
sequence rm(4) for m i mo, MO + 1,..., M (where m0 = 0 or 1) in place of the 
sequence Im(t). Here, rm(4) is the ratio of Bessel functions, 

(16) rm(W) = Im+1() Im(); 

it obeys the stable two-term backward-recursion relation, 

(17) rm_i(t) = {2m/t + rm(t)} , 

and the inequality 0 ? rm(t) < 1. The implementation of such strategems calls for 
the computation of an initial ratio rM(4) and of a single Bessel function, usually 

Io(t) weighted exponentially, and for the recursive use of (17). The efficient 
computation of rM(() has been the subject of several papers [15]-[17]. 

The performance of algorithms proposed herein were tested on a PDP- 11/34 
computer* (with 24-bit effective mantissa, 8-bit exponent, in single precision). In the 
large-s domain (t j 20) Amos' iterative algorithm [15] is employed to compute 
rM(t) and Allen's formula [18] to compute e-%I(t). The latter formula comprises 
the product of the asymptote (15) and an eighth order polynomial in (-'; its relative 
precision for t > 3.75 is better than 5 X 10-7 [19]. Rational approximations to 

(1/2e-%I0() for t > 15 have been developed by Blair and Edwards [20] to meet any 
desired precision, and these would also well serve the same task. 

3. The J- and K-functions. Analytic properties cited below are taken from 
Goldstein [5] and/or Luke [10]. The complementarity relation 

(18) J(x, y) + K(x, y) =1 

can be used to relate the properties of the J- and K-functions. Throughout this 

*The particular computer is equipped with the extended multiplication instruction set (EIS) as a 
hardware feature, but not with the floating-point multiplication instruction set (FIS). 
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section we adopt the abbreviations 

(19) h 2!xy, q = y/x. 

We note the following interrelationship and limiting values: 

(20) J(x, y) = K(y, x) + e-(X+Y)Io(M), 
(21) K(O, y) = 0, J(x,0) = ex-, lim K(x, y) = 0. 

y 00 

For small values of the arguments, J(x, y) can be efficiently evaluated by 
summing to convergence the following adaptation of the series (13): 

(22a) J(x, y) = e-x + e-(xy) I n1 Mx 
n=l m=l 

This series has the virtue that the y -- 0 behavior is reproduced in the leading term. 
The analogous series for K(x, y) is 

00 n n-I m 
(22b) K(x, y) = e-(x+Y) I x y 

n= I m=O 

Convergence is assisted by using (22a) and (22b) for the parameter domains 
x > max(y, 1) and x < max(y, 1), respectively, and invoking (18) as necessary. 

Consider the large-s domain, in which expressions exhibiting the appropriate 
asymptotic behavior are required. 

From (20) it is evident that any expression for K(x, y) in terms of x and y has a 
closely analogous counterpart for J(x, y) in terms of y and x. Such counterparts are 
supplied here, and consideration is otherwise restricted to an algorithm for K(x, y) 
with x < y; a corresponding algorithm for J(x, y) with x > y follows analogously, 
thereby completing the parameter space x, y > 0 by virtue of (18). The subtraction 
implied by invoking (18) incurs no loss of precision, because K(x, y) ' 2 for x > y 
and J(x, y) > l for x ? y in the domain 15. 

The following expansions cited by Goldstein [5] and Luke [10] converge to the 
correct asymptotes, unless X is near unity: 

00 

(23a) J(x, y) = e-(X+Y) 2 qmIM(M) X < 1, 
m=O 

oo 

(23b) K(x, y) = e-(x+y) 2 rn-MIIm() X > 1. 

This can be seen by noting the m-independence of Im(() in the asymptotic region, 
where expansions (23) then become 

J(x, y) ->e-(X+Y) (I - q) Io(w) q < 1, 

K(x, y) -4e-(X+Y) (,q-1 w,Io(w q > 1, 

consistently with Goldstein's cited asymptotes [5, (74), (75)]. That the two expres- 
sions (23) are compatible with (18) follows from the generating function for 
modified Bessel functions [19]: 

00 

(24) 'o(() + 2 (n + -m)jm(t) _e( )2 
m = I 
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For small values of q-', one can truncate the series (23b) appropriately, and 
compute K(x, y) by accumulating terms in order of decreasing m. For this purpose, 
the series can be expressed in the recursive form 

M 

(25) K(x, y) e-X+y) n -mI(M) 
m=1 

(26a) e-(X+Y)S0I(W, 

where 

(26b) SM+ 0, Sm = 'rm(W)Sm+I + 1. 

To effect this recursion, one is required to calculate the number of terms M, the 
initial ratio rM-,( ), and Io((); the rapid recursive processes (17) and (26) then 
follow. The calculation of rM- 1(() and Io(() is discussed in Section 2. A lower bound 
on the number of terms, M, can be estimated by utilizing the inequality rm(() < 1 
(which is fairly tight if ( ' m) to bound the following remainder function (the 
difference between (23b) and its approximation (25)): 

00 00 

(2) RM(X, Y) = e (X+Y) v m(, < e-(X+Y) 2 1q (m+M)IM(0) 
(27) m=M+1 m=1 

= -K(x, y). 

If a relative precision, p, is demanded of K(x, y), then M can be selected such that 
q-M is not larger than p. If an absolute precision, a, is specified, q-M should not be 
larger than a/Ku(x, y), where Ku(x, y) is an upper bound of K(x, y). Such an 
upper bound may be deduced from (23b): 

00 

K(x, y) < e-(xY)Io() 2 , ,-m = ('q - )-'e-x+Y)I (t) 
m-1 

When ij is near unity, the series (23) are inappropriate. A more appropriate series 
follows from invoking the "multiplication theorem" [19] to expand Im(() of (23) in 
terms of Im+n(t0), where 40 is the smaller of 2x and 2y: 

00 n~,f 

(28a) 71ICMM( = E l IM+n(2y), x > y, 
n=O n! 

or 
00 (Y _ X)n 

(28b) q-MmM y n_ ' IM+n(2x), x <Y. 
n=O 

Substitution of (28b) into (23b), and rearrangement of the summations, produce 
oo 

+-),( 
_ X)n oo 

K(X, Y) =e E n -! J) Im(2x) 
n=O m=n+ I 

The infinite sum over m can be replaced with a finite sum, by invoking the standard 
normalization result, 

00 

(29) 2 z Im(() + Io(4) el 
m =l 
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(which is actually a special case of (24)), to produce 
00 

Anl 

K(x, y) = K(x, x) - e(X+Y) E ! im(o) 

K(x, x) - l I -e-GIO(tO)} 

Herefo = 2x and A =y - x. 
To evaluate (30), the sum over n is truncated to n < N and then evaluated 

recursively 
N-I An n 

,~ . : - :: im(tO) =AoIo((?) 

where 

AN = BN = 0, An - rn(t0)(An+l + Bn+l) Bn B + 1 

are rn(tO) obeys the backward recursion relation (17). Again, the computation of 
rN(4O) and IO(4O) proceeds as described in Section 2. It remains only to estimate a 
lower bound on N by bounding the remainder function 

00 A\n n 

(31) R X Y- e-(X+Y 
Cc n 

I(? 
n=N * m= I 

Extending the sum over m upwards toward oo, and making use of (23), produces the 
inequality 

(32) RN(X, y) < ex-YK(x, x) 
An 

n N 

The determination of N to assure a specified precision is simplified, even if N is 
thereby overestimated, by using the inequality n!N! < (n + N)! to write 

00 An ANA 
:: - < e n! N! 

whereupon 

(33) RN(X, Y) < (Y A X) K(x, x), x <Y. (33) ~~~~N! 
An alternative upper bound on RN(X, Y) is obtained by writing Im(tO) < io((O) in 
(31). This produces the inequality 

(34) RN(X, Y) < Ae-(xY)Io(0) 

A 
- 

n=N-I 

(y _X)N 2x 
(35) < (- )! (2x) X <Y. 

A specified absolute precision, a, can be met by selecting N such that at least one of 
the upper bounds (33), (35) is smaller than a; for a specified relative tolerance, p, at 
least one should be smaller than PKL(X, y), where KL(X, Y) is a lower bound of 
K(x, y). Such a lower bound is deducible by writing (30) as 

K(x, y) = K(x, x) - R1(x, y), 
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and utilizing bounds (32), (34); thus 

K(x, y) > max{eX-YK(x, x), K(x, x) - (y - x)e-2xI(2x)}. 

Performance. One of the small-s expansions (22) is employed wherever ( < (c. 
Otherwise, K(x, y) for x ? y is computed via the more economical of the two 
truncated expansions, (25) or (30)-expansions in q-1 or A, respectively. We have 
chosen to judge the relative economy of these expansions by the number of terms, M 
or N, in their truncated expansions. A simple test to determine approximately the 
relative magnitude of M and N appears in the appendix; the test usually avoids 
computing both M and N and always avoids computing N unnecessarily. A large-s 
delimiter of (c = 20 is also recommended in the appendix. 

A numerical experiment is devised to compare the performance of four contend- 
ing algorithms for K(x, y). The first of the four algorithms is that proposed herein; 
the second employs the series expansions (22a), (22b) in the parameter domains 
x < y and x > y, respectively; the remaining two employ numerical integration, one 
by an adaptive Simpson's rule, the other by a doubly-adaptive Clenshaw-Curtis 
quadrature. The adaptive Simpson's rule found to provide the best performance is 
the AECL routine COSIMP [21] with a modified error accumulation which reduces 
the number of integrand evaluations. The doubly-adaptive Clenshaw-Curtis quadra- 
ture is a FORTRAN translation of Oliver's ALGOL procedure ADAPQUAD [22], 
augmented to accommodate an optional relative precision in a manner based upon 
(but more flexible than) the proposal of O'Hara and Smith [23, Appendix]. Both 
numerical integrators evaluate (2) directly if x - y; but for x > y it is more efficient 
to reexpress K(x, y) in terms of K(y, x) (via Eqs. (18), (20)). Thus, in either case, 
the integral is over the range [0, min(x, y)], which in practice is scaled to [0, 1] and 
the precomputed additive term (for x > y) added directly to the integrand. Allen's 
formulae [18], [19] are used to compute Io(z) for 0 - z - (. 

The numerical experiment determines the mean functional evaluation time for 
K(x, y) over identical geometric grids of x and y (35 values of each) such that 
(c - 

? < 80. Those times are recorded in Table 1, corresponding to a demanded 
relative accuracy of p 10-5, and to the same supplemented by a demanded 
absolute accuracy of a 10-5 . The superiority of the proposed algorithm is clearly 
exposed. The relative inferiority of numerical integration arises because of the 
requirement to compute Io(z) (weighted exponentially) at each integrand evaluation; 
in fact Allen's formula as used here is quite efficient for this purpose, but would 
unnecessarily limit the precision achievable in some computing environments. In 
contrast, the proposed algorithm computes only one exponentially-weighted Bessel 
function (either Io(t) or Io(tO))-except in marginal parameter domains, where both 
are calculated-together with the ratio rM(t) or rN(4O); all are computed in the 
asymptotic region (t, 40 20), where their evaluations are straightforward. 

The adaptive Simpson's rule displays superiority over the doubly-adaptive 
Clenshaw-Curtis quadrature as a numerical integrator; this is despite the former 
requiring 10% more integrand evaluations, on the average (typically 20 to 50 per 
integral for the performance test undertaken). This presumably reflects the relatively 
complex arithmetic within the latter integrator's overhead (e.g., in the computation 
of Chebyshev series-each of which may have complexity comparable to that of an 
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integrand evaluation). The required Clenshaw-Curtis roots and weights contribute 
insignificantly to this overhead, as they are computed only once throughout each 
test. 

TABLE 1 

Mean evaluation times of K(x, y) 

Mean time (ms) 
Algorithm p = l0o- a - p = 10-' 

As proposed 95 90 
Expansion (22) 146 146 
Ad. Simpsona 295 202 
D-ad. C_Cb 394 310 

aA modified version of COSIMP [21]. 
bAn augmented doubly-adaptive Clenshaw-Curtis algorithm [22]. 

4. The L-Function. Since L(x, y, p) is a symmetric function of x and y, there is no 
loss of generality in assuming throughout that x 2 y. We adopt the abbreviations 

(36a) =2pxy, 

(36b) 711 =FI yjx 12- = PX/Y = p/, 
noting that <i <min(q2, 771) < 1. 

One can easily verify the useful relationship 

(37) L(x, y, p) (1 - ePYY )(l - ePx-x) - e(P-)(x+Y)L(px, py, p- ) 

as a result of which analytic properties of L(x, y, p) with p > 1 can be deduced 
from those with p < 1. Consequently, we restrict consideration here to p - 1, though 
the strategem so developed is suitable also for p > 1 if the transformation (x, y, p) 

(px, py, p-) is made and the subtraction in (37) accommodated analytically. 
The following properties follow immediately from Eqs. (3)-(5): 

(38a) L(x,0, p) =0, L(x, y,O) (1 -e-x)(l -eY), 

(38b) lim L(x, y, p) 1 - epy-y L(x, y, 1) = 0. 
x 00 

In principle, L(x, y, p) can be evaluated by subsituting into (5) the appropriate 
expansions for the J- or K-function. In practice, some care must be taken to avoid 
loss of precision upon subtraction (particularly for p near unity), and some economy 
is obtained by noting that both K- (or J-) functions share the same (-value. 

The substitution of (22a) into (Sa) produces the small-a expansion 

L(x, y, p) (1 - ePY-Y)(l - e-x) 

(39) yfn n-1 (pm _ pn)xm 

n=2 n! m=l m! 

The leading term of (39) is within 10% of the value of L(x, y, p) everywhere in 
the parameter domain x 2: y, p ? 1, and is exact in the ( = 0 or p =1 limits. 
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An expansion alternative to (39) is more appropriate for small p: 

L(x, y, p) = (1 - ePY-Y)(l - ePx-x) e-(X+Y)(ePpx -1)(ePY - 1) 
(40) + e-(X+y) z n n X Xy n+ _ 

(xy)n} 

Expansion (40) exhibits faster convergence than (39) for p < y/x. Moreover, in the 
parameter domain p > x/y > 1, it is essential to employ (40) in place of (39) for the 
computation of L(px, py, p-1). 

Consider the large-s domain, for which the cases %2 < 1 and 2 > 1 require 
separate consideration. 

In the large-X2 domain, Xl < q1 < 1, two substitutions of (23b) into (5b) produce 
00 

(41) L(x, y, p) (1 -ePY-Y) -e-(x+Y) E (r-m- m)I M 
m=1 

The nullity of L(x, y, 1) is apparent. Note that the leading term in (41) is the x -x 00 

asymptote, relative to which the subtracted term is small (' 10%). The analogous 
expression in the small-'q2 domain, Xl < 2 < 1, which is incompatible with p -> 1, is 

L(x, y, p) = I- ePY- ePx-x 

(42) +e (X Y){Io() + E ("il7 + r)ImM 

which is symmetric in x, y. In each of (41) and (42), the series can be truncated to 
m < M and summation effected by backward recursion in a manner similar to (25) 
ff. 

If either or both of Xl and %2 is near unity, it is convenient to symmetrize (5) to 
produce 

L(x, y, p) 1 - (ePY-Y + ePx-x) 

-ePY-YSK(x, py) - ePx-xK(y, px), 

where 

(44) 6K(x, y) _l{K(x, y) - K(y, x)}. 

If X I is small, we have 
00 

(45) 6K(x, py) -{1- e(x+PY)Io(t)} - e-(x+Py) 
m=1 

in which the summation can be truncated, as before. Otherwise, one can deduce 
from (30) and its analogue for x > y 

(46) 8K(x, y) = e-(X+Y) oE (X _Y)n ntm2), X 
n= 1 * m=O 

where the double prime denotes that the first and last terms in the sum (i.e., 
m = 0, n) are to be halved. The summations of (46) can be truncated and the 
remainder bounded as in (32)-(35). The truncated summation can then be cast in 
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the convenient backward-recursive form: 

N-ln n 

E nT Y Im(tO) = AoIo(tO), 
n= nI *m=O 

AN BN -0, 

An = + 1 {rn(tO)An+1 + 2(1 + rn(tO))Bn+1} 

n + 
n n + I1 n+1 

Several factors of the form (1 - e-W) are encountered in these formulae. In order 
to avoid a loss of precision when w is small, it is prudent to employ an approxima- 
tion-such as one presented by Hart et al. [24]-which explicitly exhibits a factor of 
w at small w. 

Performance. The series (39) or (40) are implemented whenever s (c. Criteria to 
determine which of the expansions (41)-(46) to proceed with when > (c are more 
complex than those for K(x, y) in the appendix, and are omitted here. It is sufficient 
to note that the universal choice (c= 28 optimized typical functional evaluation 
times. 

The performance of our algorithm, vis-'a-vis the series expansions (39), (40) and 
numerical integration, was tested using a numerical experiment similar to that for 
K(x, y). Table 2 reports the mean of 1296 evaluation times, over an arithmetic grid 
of nine p-values in the range [0.05, 0.95] and, for each p-value, identical geometric 
grids of x and y (12 values of each) such that (c < 80. For numerical integration 
purposes L(x, y, p) is recast as 

L(x, y, p) (I - e Y)- f{q +p(l - e(Y))}e(?x)I0(2pux) du, 

where q = - p; the entire right-hand side is then rewritten as an integral over the 
range [0, 1]. 

The superiority of the algorithm proposed herein is again in evidence, although to 
a lesser degree than for K(x, y). This is because the additive leading terms in each 
expansion dominate L(x, y, p). Accordingly, typical evaluation times are also 
smaller than for K(x, y). 

TABLE 2 

Mean evaluation times of L ( x, y, p) 

Mean time (ms) 
Algorithm p 

p=-10-5 a = p 10-5 

As proposed 74 74 
Expansions (39), (40) 107 106 
Ad. Simpson* 108 106 
D-ad. C-C* 256 255 

* As in footnotes, Table 1. 
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5. Summary. We have deduced and presented suitable series expansions for 
K(x, y), with x < y, and for L(x, y, p) in the asymptotic domain; complementary 
expansions for J(x, y) with x > y follow analogously to those for K(x, y). These 
expansions supplement the small-argument expansions (22), (39), (40). 

The practical term-by-term evaluation of the series expansion must be performed 
in the backward direction, necessitating the determination of a truncation point. The 
expansions may then be summed, and recursive expressions to accomplish this have 
been presented. They require the evaluation of a Bessel function ratio, rM(t) of (16), 
and of an exponentially-weighted Bessel function, e-wIo(t); here, t is always in the 
asymptotic region (i.e., Io(() is dominated by the behavior (15)), where the evalua- 
tions are relatively straightforward [14]-[20]. 

The proposed algorithm is significantly more efficient than either direct numerical 
integration or small-argument expansions extended to domains stable against under- 
flow. This should greatly benefit the modelling of exchange and filtration processes 
[1]-[8], [11], [12], for which searches in model-parameter space necessitate successive 
functional evaluations. In particular, for models of dispersive exchange processes 
[6]-[8], multiple evaluations of the J- and/or K-functions are required to accomplish 
numerical integration at each parameter vector in the search; a fast algorithm for 
these evaluations then becomes imperative in an extensive parameter search. 

Acknowledgement. The author is grateful to Dr. M. R. Manning for useful 
discussions about this work and for drawing my attention to hydrological applica- 
tions of the J-function (in particular, to [7], [8]). 

Appendix. This appendix presents a scheme for assessing approximately, with 
minimal computational overhead, the relative magnitude of M and N (respectively, 
the number of terms retained in the truncated series (25) and (30) for K(x, y) to 
meet a demanded precision). 

An approximate equality of the two remainder functions (27) and (33) yields 

(Al) qM N! (eA)N 

which is of similar order to the specified precision. In deducing (Al), multipliers 
independent of M or N have been dropped, and the last expression follows from 
Stirling's approximation to N!. The reliability of (Al) should therefore improve with 
increasing M and N. The break-even point for the two expansions (i.e., M = N) 
satisfies approximately e? - M-'. For values of eAi smaller or larger than Mm-, 
expansions in /\ or in q-1 (respectively) are likely to be the more appropriate. The 
following two easily-proven lemmas interpret (Al) as an exact equality and permit 
the implementation of this consideration. 

LEMMA 1. Define 

(A2) E(M, M)_(M,!).'. 

If A < r1-1E(M,), then N < max(M, Mj) 
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LEMMA 2. If 

(A3) M-Mo < e/ or FM<(MeA M) 

then M < N + Mo. 

The proof of Lemma 2 invokes Stirling's approximation for (M - Mo)!; its 
converse also holds to within the accuracy of this approximation. 

The recommended strategy for computing K(x, y) for q > 1, t > (c is: if A < 

rq-'E(M,)-for a supplied value of E(M,)-then proceed via an expansion in A; 
otherwise compute M (appropriate to an expansion in -') and proceed via this 
expansion if (A3) is satisfied (for a supplied value of MO), or via an expansion in A\ 
otherwise. The rationale is that, if M, N < Mc, the overhead to ascertain the more 
appropriate expansion is unwarranted; and if, having computed M, an expansion in 
A\ is the more appropriate, the presence of Mo compensates for the overhead in also 
computing N. 

Optimum universal choices for (c, Mc, and Mo would depend upon the distribu- 
tion of encountered parameter values, x and y, upon the precision demanded, and 
upon the computing environment. We here propose such choices, determined by 
minimizing the mean evaluation time of K(x, y) on a PDP-1 1 computer for identical 
geometric grids of x and y, and for a demanded relative precision of 10-5: 

(c = 20, Mo = 50, Mc = 20, E(Mc) = 8.3. 

None of these choices are critical: changes of - 10% affect mean evaluation times 
by 1%. 
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